The
Discreet Ledger

Formal Specification

Revision 1.0

Published June 2023
Authored by Brandon Koerner & Frederik Markor

The Discreet Ledger Formal Specification

Brandon Koerner Frederik Markor

brandon@discreet.net frederik@discreet.net

June 29, 2023

Abstract

This paper introduces a scalable, permissionless, fully confidential as-
set remittance protocol called Discreet. We present a concise construction
for a transactional ledger-based digital currency with stronger privacy
guarantees than currently exists, achieved by leveraging several recent
advancements in cryptography. Utilization of mixed transactions allows
for anonymous and confidential outputs to be deshielded and spent in a
public manner for the purposes of compliance and regulation. Discreet
is governed and secured by a novel Proof-of-Stake consensus algorithm,
Aurem, which obfuscates stakes and block validators, while guaranteeing
fairness without the need for a trusted dealer. It also ensures fast finality,
and scalability to accommodate for global usage of the network. The na-
tive asset of the protocol, $DIST is used for transacting value across the
network.

Keywords— privacy, cryptocurrency, zero-knowledge, DAG, consensus

Contents

Introduction

Preliminaries and Definitions

2.1 Public Parameters
2.2 Blockchain Definitions
2.2.1 Distributed Ledger . . .
222 UTXO..........
223 Wallets
2.2.4 Transactions
225 Blocks
23 Nodes
2.4 Consensus

Base Transaction Model

3.1 Cryptographic Definitions . . .
3.2 Constructions
3.2.1 Addresses
3.2.2 DKSAP
3.2.3 Commitments
3.2.4 Range Proofs
3.3 Ring Signatures
3.3.1 Sigma Protocols

3.3.2 One-Out-of-Many Proofs

3.3.3 Parallel One-Out-of-Many Construction

3.3.4 Triptych
3.4 Private Transaction Model . . .

Transparency and Discreet

4.1 Transparent Transactions . . .
4.1.1 Definitions
4.1.2 Protocol Specification .

4.2 Mixed Transactions

Consensus

5.1 Consensus Definitions

5.2 Choosing Committee Members
5.3 ABFT

5.3.1 Broadcast
5.3.2 Randomness Beacon . .
Future Work

Acknowledgements

w

O UL UL U R WWw W

—_
[e>RNeRNREN BE e Nl Nl]

— = =
T W O

19
19
19
20
21

22
22
22
23
23
24

26

26

1 Introduction

Discreet is a novel privacy-oriented decentralized value transfer protocol. As focus in
the industry shifts towards using decentralized currencies as means of exchange, the
foundational layer of any value transfer system must adhere to strict privacy standards
to mimic the behaviour of fiat currency.

Building on recent work within cryptography, the protocol introduces three neces-
sary components for an effective value transfer protocol that are essential for a currency
to be a viable candidate for remittance.

1. Confidential transfers: all transactions performed on the Discreet network are
confidential by default, with information only being discernible by the sender and
receiver. Funds can optionally be transferred as non-confidential transactions
for purposes such as compliance.

2. Scalability: Various cryptographic schemes are used to reduce overhead and
ensure a light-weight network. All transactions are propagated anonymously
via an anonymity graph in the peer-to-peer network, shielding the IP address of
the origin and finalized at the consensus-layer.

3. Finality guarantees: All transactions are settled and finalized within 15 sec-
onds. The settlement is secured by our novel confidential proof-of-stake consen-
sus, called Aurem, a permissionless consensus which blinds the staking amounts
of committee participants and removes the need for a trusted dealer, instead
utilizing a randomness beacon.

This document provides definition and specification to the underlying value trans-
fer system for the Discreet distributed ledger. Further work will specify and outline
the full technology stack and core features in detail.

2 Preliminaries and Definitions

Before presenting the distributed ledger and coin model, it is necessary to define some
terms. Unless stated otherwise, these definitions can be considered consistent in all
presented sections in this document.

2.1 Public Parameters

Define G to be a cyclic group of order I > 3, such that the discrete logarithm problem
(DLP) is hard, and the decisional and inverse decisional Diffie-Hellman assumptions
hold. Define the scalar field of G as F;. Let G, H and U be generators of G with
unknown discrete logarithm relationship; assume all subscripted or indexed G and H
are independent generators of G as well, with unknown DLP relationship. Define two
hash functions modeled as random oracles: H? : {0,1}* — G, #' : {0,1}* — F; in
lieu of explicit domain separation, a subscript is added to H! and HP as necessary.
Consider, for all hash functions, the hardness of both preimage and second preimage
attacks. Additional public parameters may be presented, and will be explicitly stated
to be so; consider these to also be consistent in definition. These additional definitions
will be in their respective sections for the sake of context.

2.2 Blockchain Definitions

The following sections are for the definition of concepts relating to distributed ledgers,
blockchain, and cryptocurrency for Discreet.

2.2.1 Distributed Ledger

A distributed ledger represents a distributed data structure consisting of a state and a
sequence of state transitions with total ordering. For cryptocurrencies, the state tran-
sitions are transactions in a value transfer system, with the state being the outputs of
transactions. The specific structure of the state, along with the rules governing the
validity of transactions, vary between cryptocurrencies and their implementations.

Often times, it is useful to define a distributed ledger’s accounting system, which
can be defined as the method for storing values in each address/account. There are
two main methods of accounting for distributed ledgers: the account-based model and
the unspent transaction output (UTXO) model. In an account-based model, each el-
ement in the state represents an account, i.e. an addressable unit that carries value.
For instance, on Ethereum’s distributed ledger, each account consists of an address, a
strictly increasing nonce, a value, and a hash of an autonomous script which governs
the account.

The benefit of an account-based model is the ease of implementation for complex
governance and autonomy, as can be seen with Ethereum’s EVM and smart contracts.
However, such a model depends on a shared mutable state, thus individual transac-
tions may be manipulated to produce more desirable outcomes by miners and users.
Additionally, the semantics of contract code become more complex, and authors of
said code are required to understand these complexities or risk adding vulnerabilities
and security issues.

The other accounting model for distributed ledgers, the UTXO model, does not
rely on a shared mutable state, and thus the semantics for state transitions become
simpler, at the cost of expressiveness. In this model, the state consists of a set of
unspent transaction outputs, or UTXOs, which abstract the concept of valued and
addressed outputs in a transaction for a value transfer ledger. Each of these UTXOs
typically stores an address derived from a user’s public key and an amount. The state
transitions in this model are a set of input UTXOs, called transaction inputs, and new
UTXOs. The rule for validity for a transaction in the UTXO model is (1) transaction
inputs must be present in the set of UTXOs; (2) the sum of values in the inputs must
equal the sum of values in the outputs; and (3) all transaction inputs and outputs
must be unique and can only ever be spent once.

As mentioned previously, the UTXO model is not on its own as expressive as
the account-based model. However, recent developments have created variants of the
UTXO model which, qualitatively, have similar expressiveness as account-based mod-
els, with proof of their validity. We will go more into detail in the programmability
section on this.

Discreet will implement a distributed ledger equipped with a variant of the UTXO
model which allows for both private (i.e. anonymous and confidential) transaction
outputs and standard transaction outputs (i.e. those seen in transparent distributed
ledgers). This implementation was chosen for two reasons. First, digital cash should
emulate the privacy of fiat cash, where transactions between users do not provide
transparency of said user’s balance or spending history. Secondly, support for a trans-
parent currency model allows for compliance with exchanges. It should be stated that
supporting both types of transfers will not sacrifice the utility of either; privacy is
preserved for private transactions and UTXOs.

2.2.2 UTXO

UTXOs are the atomic unit of the Discreet ledger’s state. Since Discreet implements
both a transparent and private currency model, UTXOs will either be private or trans-
parent (which will be used interchangeably with the term public). Public UTXOs are
referenced by the hash of the transaction which created it and an offset representing
the index of the UTXO in the transaction’s output array. This is enough to guarantee

that public UTXOs will have a unique reference for a hash function under the random
oracle model. Private UTXOs are referenced by a unique number assigned in order of
appearance in the ledger. This suffices due to the nature of the privacy and spending
rules for private transactions, and guaranteed to be unique and consistent across the
distributed ledger under the performance of the chosen consensus mechanism. Please
note that the terms UTXO, transaction output, and e-note may be used interchange-
ably with one another in this and all following sections.

As defined previously, public UTXOs contain a reference to their source transac-
tion, an address representing the owner of the UTXO, and a value associated with
the UTXO. Private UTXOs contain a reference to their source transaction, a public
key representing the destination address, a potentially encrypted amount, and a com-
mitment to the value. The exact role the destination address public key, encrypted
amount, and commitment play in the coin protocol will be explained in the base
transaction model section.

2.2.3 Wallets

Cryptocurrencies make use of public key cryptography in a variety of ways. Mainly,
a key pair is generated representing an account, with the private key used for autho-
rization of payment, and the public key used to derive an address associated with the
account. A wallet is a collection of accounts derived from a singular source of entropy
and randomness. Each wallet is generated in such a way that they can be recovered
from a seed phrase, generated from the wallet’s entropy. Thus, funds are recoverable
if the seed phrase is backed up in the event of corruption or loss of data.

Public accounts are accounts which possess public UTXOs and can create trans-
parent transactions. They consist of a key pair, where the public key is hashed using
RIPEMD160 and the resulting hash is used to construct the account’s address. This
address can be shared with others to receive funds. Funds in the form of public UTXOs
can be spent by authorizing their use as an input in a transaction via a cryptographic
signature. The signature signs data unique to both the transaction and the output
using the private key associated with the public key the address is derived from.

Private accounts are used to spend and receive private UTXOs, and can create
private transactions. They consist of two sets of key pairs, called the spend keys and
view keys. Spend keys are used to authorize payment, and view keys are used to
decrypt values stored in private UTXOs. Their full use in authorizing payment and
receiving funds will be explained in a following section.

2.2.4 Transactions

Transactions represent a state transition in the distributed ledger. Mainly, they are an
object which transfers funds via the spending of UTXOs and the creation of new ones.
In the context of more general distributed ledgers, they both represent state transitions
governed by contract-specific code and value transfers, as seen in Ethereum.

Discreet provides three constructions for transactions in the base value transfer
system: private, transparent, and mixed transactions. Private transactions spend and
create private UTXOs only; transparent transactions spend and create exclusively
public UTXOs. Mixed transactions bridge the two types of UTXOs and spend one
type (i.e. either all private or all public inputs), and can create UTXOs of either type.

2.2.5 Blocks

Blocks are an abstraction useful in distributed ledgers, and aggregate transactions
into a single unit. In the timestamp server model of distributed ledgers, they assign
a timestamp to the transactions and a total ordering over a set of transactions in
the block. They reference a previous block or multiple blocks, thus forming either a

blockchain or directed acyclic graph (DAG). Under some form of consensus, a chain
or DAG of blocks may reach a consistent state in a distributed network.

2.3 Nodes

Nodes are instances of the Discreet distributed ledger software and directly validate
all structures in the distributed ledger. Nodes also participate in a consensus mech-
anism to achieve consistency in the distributed ledger’s state through the process of
minting (i.e. creating) new blocks and linking them in the blockchain or DAG. Not all
nodes directly participate in consensus, and different types of nodes may exist, such
as archival nodes which store a non-pruned distributed ledger.

2.4 Consensus

In order for a distributed ledger’s state to achieve consistency in a potentially asyn-
chronous network, a method of reaching consensus among nodes is necessary to define.
A consensus mechanism is a protocol operating on transactions and/or blocks to cre-
ate a total ordering on the state transitions, thus achieving a consistent state. This is
often achieved via the process of minting or proposing new blocks, propagating them
and other nodes either accepting them or rejecting them based on some kind of vote
or other set of governance rules.

Discreet will make use of Aurem, a novel combination of confidential proof-of-stake
and any asynchronous byzantine fault tolerant system. Aurem builds on the work of
Orlandi, et. al [1] by allowing zero knowledge proofs of candidacy weighted propor-
tionally by a stake to choose validators for participation in a given unit of consensus.
The implementation of this is independent of the transaction/coin protocol and sits
on top of it, but below the finality layer. The finality layer makes use of a variant of
AlephBFT. More details can be found in the Consensus section.

3 Base Transaction Model

In this section we will define the coin protocol specific to the privacy aspect of Discreet.
This can be taken as the private transaction model used to construct Discreet’s value
transfer system.

3.1 Cryptographic Definitions

Discreet’s public key cryptography will be implemented as elliptic curve cryptography
under the Ed25519 curve, and the hash function to be used is SHA256. The advantage
of these choices is that curve scalars, compressed points, and hashes will all be 32 bytes
in size. Ed25519 is not a prime order group, and has order 8 x| (where [is a prime
~ 22°2); however, all curve points will be restricted to use the subgroup of size .

3.2 Constructions
3.2.1 Addresses

We define a private account’s view key pair to be (ky, K}) and spend key pair to
be (ki, K;), where x will indicate ownership, k indicates private key and K indicates
public key. The address corresponding to a private account with this structure is called
a stealth address. A stealth address is constructed from public keys (K7, K;) via a
Baseb8 encoding in the following way:

A, = Baseb8(0x1 || ToBytes(K7;) || ToBytes(K) || chk) (1)

Where 0x1 is the version byte for Discreet, currently set to 1, and chk is a checksum
calculated using a hash function H:

chk = H(0x1 || ToBytes(K;) || ToBytes(K3))[0 : 4] (2)

Given the concatenation operator || and the bytestring slice operator [+ : %], which
returns the byte substring beginning at the first index, inclusive, and ending at the
last index, exclusive.

3.2.2 DKSAP

Stealth addresses are used in a protocol for building one-time destination addresses,
which guarantee that an observer could not recover any information about the receiving
party’s address in a transaction. This is known as the dual key stealth address protocol,
or DKSAP.

For a spender Alice who has a receiver Bob’s address (K3, Kg), Alice can perform
the following steps:

e Alice generates a random scalar r € F; and constructs a key pair (r, R) where
R =rG.

e Alice then computes a Diffie-Hellman shared secret using Bob’s view key and
reduces it to a scalar ¢ = H'(Kgr).

e Alice finally computes the one-time destination address’ public key T' = ¢cG+ K5
and publishes (R, T') as part of the transaction.

Bob with private view key k% and private spend key k% can easily recover his private
key to his one-time destination address Alice created. He does this by first recovering
the Diffie-Hellman shared secret ¢ = H'(k§R) and constructing the one-time destina-
tion address’ private key t = ¢ + k%. Bob can verify he is the receiver by checking if
tG =T. A visualization of this protocol can be found in Figure 1.

The key R in this protocol is referred to as the transaction public key, and can be
reused for multiple receivers in the same transacction by domain separating the hash
function used to calculate the Diffie-Hellman shared secret. This is done in practice by
including the index of the private output containing the one-time destination address
in the calculation.

3.2.3 Commitments

A commitment to a value Com(v) can be defined as a one-way function operating on
a value which does not reveal the value itself. The commitments used for Discreet
are Pedersen commitments, which are commitments to values that are additively ho-
momorphic; i.e. Com(ve) + Com(vy) = Com(ve + vp). Pedersen commitments are
constructed using the group generators G and H:

Com(a,r) = aG +rH (3)

For a value a € F; and a randomness r € F;. We require the commitment scheme to
be perfectly hiding, which is to say, for the generator H = vG, where is unknown,
an attacker cannot find any a’ and r’ where a’ + v’y = a + ry. We also require the
commitment scheme to be computationally binding; that is to say, an attacker cannot
find a combination a’ + r’ without solving the DLP for . From our definition of H
and Com(a, r) we can guarantee these properties. It is also useful to note that amount
commitments use a as a blinding factor (also known as a mask), which is a random
value; and r as the committed value, the reverse of what has been presented.

Alice’s temp keypair Alice’s Transaction

r R » Tx Pubkey

c 3
He (Kp)

L 2

Bob’s stealth address

T h\ 2

S
G | T e

Alice’s computations

’ view pubkey K7

V¥

’ spend pubkey K7

’ view privkey k3

| spend privkey k3

J’ t v c
Bob’s Spending Keys ctkp ——| H(kRR) ¢
‘ Private Key }(Bob’s computations

| Public Key :(

Figure 1: Dual key stealth address protocol used in private transactions

In the following sections, it is necessary to extend the definition of a commitment
Com to matrices of form A = {a;.}; for {a;:},r € Fi:

Com(A,r) =rH + Zaj,iGj,i (4)

Jri

Given our definition of indexed G in the public parameters section. We also define a
commitment scheme on two matrices A = {a;,;}, B = {b;,:}; for {a;,:},{bji},r € Fi:

COIIl(A7 B, T) =rH + Z aj’iGo’jﬁi + Z bj,iGl,j,i (5)

J»i J»i

Formally, a commitment in this scheme is to a value a and some randomness r, such
that a two-phase cryptographic protocol is constructed. The first phase, /textitCom-
mit, chooses randomness r and the value a and constructs a binding commitment; the
second phase, /textitReveal, opens the commitment; that is, the value and random-
ness are revealed. A commitment to zero is one where the value a = 0. Proofs of
knowledge to an opening to a commitment to zero are useful in the construction of
privacy protocols, and will be shown in the following sections.

Amount commitments in Discreet are used as the basis for balance proofs in trans-
actions, and are used to hide the values used as amounts in private transactions.
Additionally in this section, we define equations used to construct a private out-
put in a private transaction. First, we include a commitment to the output amount
C. = Com(yx,b«) for a receiver to the output receiving b, coins and masking value
Y« = H'("commitment _mask” || c), using the definition for the Diffie-Hellman shared
secret ¢ in the previous section and ”commitment mask” used for domain separa-
tion. We also define a symmetrically encrypted amount g. = b, ®s H(”amount” || c),
where @g is the truncated XOR operation on the first 8 bytes of the hash. Note that
a receiver simply applies this operation on g. after recovering c to get the amount b.,

and that domain separation is still used in the calculation of ¢ using the index of the
private output.

From this, we can define a private output Q. as a tuple (T%, C4, g+), which is 72
bytes in size. The coin protocol for balance proofs and their construction will be
presented in another section.

3.2.4 Range Proofs

Due to commitments to values operating on a cyclic prime-order subgroup, one could
construct a commitment to a value b, which results in overflow, or construct two
outputs with commitments to values b1 > 0, by = —b; to artificially create arbitrarily
many spendable coins b;. To prevent this, a proof must be constructed that all b, lie
in a valid range. This proof is known as a range proof.

We define the relation for a range proof as follows:

{({Gj};z%-lv{Hj};":%-l CG.GHEGV ={V;} €G™ v ={v}y = {7} € FI")
V; =v;G+~;H ANv; €[0,2" — 1] for j € [O,m)}

This gives a relation for an aggregated range proof on m output commitments V
with masking values v and values v within n bits in size.

Discreet makes use of Bulletproofs+[2], a succinct proving system which has a
mechanism for satisfying the above relation on aggregated commitments and values.
We assume a function BPProve(V,v,~) — B implements Bulletproofs+ and satisfies
the above relation. We also assume a function BPVerify(B8) — {0,1} outputs 1 for a
valid Bulletproof+ B and 0 otherwise. Values in Discreet will be 64 bits in size, thus
n = 64. We choose not to present the full definition of the Bulletproofs+ protocol here
for brevity and also due to their construction not being fully relevant to the techniques
Discreet builds upon. Relevant details can be found in [2].

3.3 Ring Signatures

Ring signatures provide a method for obscuring the specific output being spent in a
private transaction, providing stronger anonymity than using DKSAP alone. They
operate as an aggregate relation demonstrating membership of a public key M; with
private key 7 in a set of public keys (often called the ring) {Mj};-\r:_ol C G, {M;}[] = My,
knowledge of the private key r where M; = rG; and weak linkability. Weak linkability
means that no valid ring signature has been constructed using » and M; before. This
guarantees a private output cannot be spent twice. The relation, Rsig, is given by:

Reig = {{Mj}ﬁ\]:_()l CGrelF;G,J,UeGleZso; M €G:
(6)
0<I< NAM, E{Mj}/\Mler/\Uer}

The parameter J is defined to be the linking tag. Linking tags are the image of a veri-
fiable pseudorandom function operating on the signing key r and must be constructed
properly in order for the proving system under the relation Rsig to be sound. It is
also used in performing weak linkability; if a valid ring signature with linking tag J’
is produced using the same 7, J = J’. Thus, part of the relation would also need to
demonstrate for all valid ring signatures, all J are unique.

Typically, the proof for a ring signature relies on the prover demonstrating knowl-
edge of an opening to a commitment to zero in a set of commitments. It is useful to
note that a public key R = aG = aG + 0H can be viewed as a commitment to zero

(r = 0) with value a. This is beneficial to the construction of Discreet’s linkable ring
signature scheme, and many others.

Provided here is a formal definition for the four algorithms which comprise a link-
able ring signature scheme:

e KeyGen(r) — (x,X): Generates a secret key x and public key X, optionally
using randomness 7 if specified.

n—1

e Sign(z, M, R) — o: Builds signature o on message M using aring R = {X;}7 -,

with some X; € R where 2G = X;.

e Verify(o, M, R) — {0, 1}: Verifies signature o on message M with respect to the
ring R, outputting 0 on rejection and 1 on acceptance.

e Link(o,0’) — {0,1}: Outputs 1 if ¢ and ¢’ were signatures using the same
private key; and 0 otherwise.

3.3.1 Sigma Protocols

Sigma protocols were introduced in a paper by Jens Groth [3] as a means of de-
scribing common proving systems and their similarities, and as a generalization of
cryptographic prover-verifier protocols. A sigma protocol is a three move interactive
protocol allowing a prover to convince a verifier that a given statement is true. The
prover sends an initial message to the verifier, and the verifier responds with a random
challenge, to which the prover sends a response. The verifier looks at the transcript of
the interaction and decides whether or not to accept or reject the proof of the state-
ment. Sigma protocols are restricted to protocols in this manner with the following
properties:

e Completeness: If the prover has knowledge of a witness w for the statement

u, then the prover should be able to convince the verifier of said statement.

e Special soundness: Given that a prover does not have knowledge of a witness
w for the statement, the prover cannot convince the verifier; formally, if the
prover answers multiple challenges correctly from the verifier, then it is possible
for a witness w to be extracted for the statement.

e Special honest verifier zero-knowledge: The sigma protocol does not reveal
information about the prover’s witness w. Formally, protocol transcripts can
be simulated given any verifier challenge; i.e., for any statement and verifier
challenge, a transcript can be simulated that is accepted by an honest verifier
without knowledge of a corresponding witness.

The benefit of formalizing a cryptographic protocol as a sigma protocol is twofold.
First, it generalizes many existing cryptographic protocols, thus allowing for con-
nections between instances of them to be made. Secondly, they are easy to make
non-interactive through the Fiat-Shamir heuristic, given a cryptographic hash func-
tion modeled as a truly random function (the random oracle model). Thus, they
may describe many constructions, such as digital signature schemes and encryption
schemes.

3.3.2 One-Out-of-Many Proofs

A one-out-of-many proof is a statement on a ring of commitments to which the prover
knows of exactly one opening to a commitment to zero. A one-out-of-many proof
can also be a ring signature, due to our relation between public-key cryptography
and commitments in the previous sections. First introduced by Groth, generalized by
Bootle, and modified by Sarang and Surae Noether [4], it a is a sigma protocol for the
following relationships:

Rbits:{(ZEZZo)20§l<N} (7)

10

Riink = {{Mj}j.vgol CGreF;GJUeGlelsy:U=rJAM = rG} (8)

Given a set of N = n™ commitments. A one-out-of-many proof like this has the ad-
ditional property of linkability, although a one-out-of-many proof does not necessarily
need to have this property.

The relation is split into two components, the first of which is the "bits" proof.
Rpits is a binary proof on the signing index, which is decomposed into an n by m ma-
trix {oj,; ?;0{3251 where o ; = §(l;,1) where § is the Kronecker delta and [; is defined
as the jth digit of 7 in base n. The sigma protocol for Ru;ts is defined in Figure 2 and
Figure 3.

Pbits(l) :

e Select random r4 € F; and {am}?;lljzal C F;. Set

n—1
m—1 _
{aj0}7 == aja
=1

e Define {ajJ}Z;:lbm*l C F; such that o;,; = 6(l;,%) and select random
rp € F;.

e Define A = Com(a, —a?,74) and B = Com(b,a(l — 2b),75).
P—=V:
A, B
V=P
£e{0,1}*
P& :
o Define {fw}?:_lljio_l such that f;; = a;; +£0j,-
e Define z4 =74 + &rp.

P—=V:
~1,m—1
{fiiticijoe 24

Figure 2: Sigma protocol for Rp;s

Vbits(A7 37 f7 ZA) :

e For0<j<m,let fjo=€6—S""" fii

e Accept if and only if:

A+EB = Com(f, f(€ - f),2a) 9)

Figure 3: Sigma protocol for Ry;s, verify component

11

Plink({Mi}i\Lala Ja la T) :

n—1,m—1 n—1,m—-1 .
e Construct {a;,;}; -, and {0}, " in the same manner de-
scribed in the first two items of Ppjts.

o Define coefficients {pkj}iv:_oljia ! such that

m—1 m—1
pi(x) = H (ajk, +xojk,) =0(1,k)a™ + Z pk,jxj
j=0 §=0

where k; is taken to be the the jth digit of k in base n.
e Choose random {p; ;.”:_01 C .
o Construct {Xj};”:_ol where

N-1
X; =Y priMi+p,G
k=0
o Define {Y ;“;01 where Y, = p;J.
P—=V:
(X145}

V=P
e {01}

PE) :

e Define {f771}7:_11”]7251 such that fj,i =aj;+ fO‘j7i

o Let z=rgm — 01 piéd.

P—=V:
“1,m—1
{fishicijZo 2

Figure 4: Sigma protocol for Rinx

12

Vlink({Xj}7 {Yj}a fa Z) :

e For 0 <j<m,let fjo=¢§— Z:’;ll e

e Take k; to be the jth digit of £ in base n.

e Accept if and only if:

N-1 m—1 m—1
M |] fim | = D €X;—2G =0 (10)
k=0 =0 j=0
N—-1 [m—1 m—1]
U | TII tiws | =D €Y, —27=0 (11)
k=0 i=0 j=0

Figure 5: Sigma protocol for Rk, verify component

The construction of the sigma protocol Prits, Veits is sufficient for proving the
relation Ruits. First, the relation can be proven as a binary proof on the deconstruction
of [into o:

n—1

Vi,j:o05: € {0,1} and Vj: Zaj’i =1
i=0

This first constraint is satisfied when checking Equation 9, where both f is checked
to be well-formed and the coefficient on &% in f(& — f) is shown to be zero. That is,
0;,i(1—0j,:) = 0 if the commitments are equal, thus ensuring all o, ; are either 0 or 1.
Note that the fact that 032‘,1‘ = 0;,; is used in this equation’s verification. The second
constraint is satisfied if f is well-formed, which is checked entirely in the equation.
Thus, all the constraints are verified by Equation 9.

The sigma protocol for Riink is used to prove membership M; € {M; };.V;()l, knowl-
edge to the opening r of commitment M; = Com(0,r), and linkability where U = r.J.
The definitions for {f;:}, {a;,i Z;:lbmfl, and o can be reused for both Ruits and Riink,
which is the case for efficient implementations of one-out-of-many constructions. The
validity and proof of the construction for the sigma protocol for Rink is left out for
brevity, but can be checked in [4]. The definitions used in this paper are the same,
save for the separation of the bits sigma protocol and the linkable one-out-of-many
sigma protocol. It can be taken that both constructions are complete, special sound,
and special honest verifier zero-knowledge.

3.3.3 Parallel One-Out-of-Many Construction

It is necessary to extend the one-out-of-many construction to prove knowledge of
multiple openings to commitments to zero at the same index in d > 1 separate sets,
but retaining linkability for the first set only. This is a d-linkable one-out-of-many
sigma protocol which demonstrates the following relation:

i,a=0

Rplink = {{Mi,a}Nfl’dfl cGYJeG,le Z>o, {ra}i;%) cF:
(Mo =71GY_LANU = roJ}

Only minor changes are necessary to Riink to produce a valid sigma protocol for the
above relation. No changes are necessary to Ruits, and as such it is not reproduced.

13

Note that the use of po, when used in future sections, will be referred to as the o
trick. The additions of and modifications to protocol elements are produced solely, for
the sake of brevity.

Pplink({Mi7a}a J; la {’f‘a}) :

o Let K, =r,J for all a € (0,d).

e Define po = H(a,{M; o}, J,{K,}) for all a € (0,d).

e Construct {X; };”:_01 where

N-1 d-1
X; = Dk,j <Mk,0 + Z MaMk,a> +p;G

k=0 a=1

P=V:
{Ka} {X;}

|
&e{0,1}*

P&):

o Let z = (7‘0 + Zi;ll Mara) gm - Z;n;ol pjgj'

P—=V:
Z2 Volink({Mi .}, J)

o Define po = H(a, {M; o}, J, {K4}) for all a € (0,d).

e Accept if and only if:

N-—-1 d—1 m—1 m—1
(Mk,o + Z MaMk,a> H fik; | — Z FX;—2G=0 (12)
i=o

k=0 a=1 j=0
d—1 N-1 [m-1 m-1
<U+ ZuaKa> S {ILsw | - evi-27=0 (3
a=1 k=0 \ j=0 §j=0

Figure 6: Sigma protocol for Rpiink

3.3.4 Triptych

Triptych is the family of linkable ring signatures which prove the relations presented
in the previous sections in a linkable ring signature protocol. The full sigma protocol
employed by Triptych is presented in figure 7 and only differs from the original protocol
presented in [4] slightly. The main modification is in Phits, where originally the isolated
proof size was four group elements and two field elements (ignoring f); we instead
use the modification made in [5], which halves the isolated proof size. The entirety
of Triptych is reproduced in a single sigma protocol for completeness, even if it is

14

redundant.

3.4 Private Transaction Model

The private transaction model for Discreet is based on the Triptych linkable ring
signature protocol, with d = 2. Before providing the transaction construction proto-
col, a few things must be considered. First, the Discreet private distributed ledger
L= ({P:},{T:i},{Jx}) is composed of transactions 7; which are previously validated,
creating all Py, outputs; it is unknown to the ledger which outputs are spent due to the
privacy model, but it is guaranteed that an output is only spent once in the ledger. All
Ji correspond to the P, such that an unknown one-to-one map M : P — J could be
constructed if the DLP is broken. These Ji are the linking tags used in the Triptych
proofs for each input in a transaction 7, and are kept in their own set for transaction
verification. They, too, form a set.

Each output P, whether spent or unspent, is a tuple as defined previously in sec-
tion 3.2.3. The tuple contains 2 commitments and a (potentially) encrypted amount
field used in information recovery in the manner described in section 3.2.3. The two
commitments are one public key T, computed via DKSAP, and a value commitment
C. Tt is also useful to define some reference to the creating transaction 7; which all
outputs contain.

A transaction 7 is defined as a tuple T = (uy, R, {Z: })V o', {00} {o: 1Yo L, B)
where uy is the fee, R is the transaction public key, Z; are the transaction input data,
O, are the transaction output data, o; are the Triptych proofs/signatures, and B is
the Bulletproof+ range proof on the outputs. W is the number of inputs, and O is the
number of outputs; both of these are constant within the transaction but can be differ-
ent in another transaction. The transaction outputs are tuples where O, = (75, Qo, o)
with one-time destination address public key (hereon referred to as the output public
key) T,, output commitment @, and encrypted amount g,. The transaction inputs
are tuples as well, where Z; = ({Mi;k’a}kN’;i’ol,P{,Ji) with {Mlka}kN;iol being the
ring of outputs (excluding the encrypted amounts; thus M;. o is the output public
key and M;,j 1 is the output commitment). P} is known as the pseudo-output, and is
constructed in a particular manner described in the transaction creation protocol. J; is
the linking tag corresponding to some output public key M, 0 = ri;1,0G, Ji = r;lfoU,

Here, we present the manner which a user can construct a valid transaction 7
spending their W outputs P; = (T3, Cs, gs, H(T)), where H(T) is a reference to the cre-
ating transaction, and creating O fresh outputs O, to destinations {(K7},,, K3,,) (?:_01.
It is assumed that if needed, a change output is included implicitly. Note the reference
to the creating transaction can be used to look up information from that transaction.
The user’s own address is (K, K,) with corresponding private keys (k,, k;).

TxRecover({ P}V o ") — ({b:}, {wi}, {t:}) :

e For all outputs to be spent P, = (T3, Ci, gi, H(T)), recover each of their source
transaction’s public key Ry; using the source transaction reference H(7) in
each output and some oracle, which can be implemented as a local key-value
database.

e First calculate the shared secret ¢; = H! (k7 Re;:), then recover decrypted amounts
bi = gi ®s H("amount” || ¢;) Vi € [0, W).

o Verify that C; = Com(H(”commitment mask” || ¢;), b;) Vi € [0, W).

e Recover output private keys t; = ¢; + ky, for all outputs to be spent; make sure

to check T; = t;G.

TxCreate({ P} o, {bi}) — U

15

Ptriptych({Mi,oc}a J7 l? {Ta}) :

e Select random 74 € F; and {a]-_,i}f;ﬁ’f;al C ;. Set

n—1

{a; 0} == aj.
=1

e Define {aj,i}zj;lbm_l C F; such that o;,; = 6(l;,7) and select random
rp € Fl.

e Define A = Com(a, —a?,74) and B = Com(b,a(1 — 2b),7p).

o Let K, =ryJ for all « € (0,4d).

e Define p = H(o, {Mi o}, J, {Kq}) for all a € (0,d).
N—1,m—1

e Define coefficients {py,;},—y =o such that

m—1

m—1
pi(x) = H (ajr; +x0jk;) =06(1, k)™ + Z Pk’
j=0

§=0
where k; is taken to be the the jth digit of k in base n.
e Choose random {p, }}”:_01 CF,.

e Construct {X; };-":_01 where

N-—1 d—1
X; = Dk, <Mk70 + Z MaMk7a> +p;G

k=0 a=1

e Define {Y; ;-”:_01 where Y, = p,J.
P=V:
{Koz}vA7B7{XJ}5{Y]}

V=P
&e{0,1}*

P(E) -

e Define {fﬂ}?;lljzal such that f;; = a;j; + oy

e Define z4 =74 + £rp.
e Let z = (7’0 + Zi;ll /MM) & — Z;‘n:_ol Pj§j~

P—=V:
“1,m—1
{fialicijmo 24,2

Figure 7: Sigma protocol for Triptych

16

Vtriptych({Mi7a}’7 J) :

e For 0 <j<m,let fjo=§— Z?;ll fii-
e Define py = H(o, {Mi o}, J, {Ko}) for all a € (0,d).

e Accept if and only if:

A+¢&B = Com(f, f(§— f),za) (14)
N—-1 d—1 m—1 m—1)
> (Mk,o + Z#aMk,a> Il fims | = D_€X;—2G =0 (15)
k=0 a=1 =0 =0
d—1 N—-1 [m-—1 m—1)
(U +> MQKQ> ST fins | = D_€Y;—27=0 (16)
a=1 k=0 \ j=0 §=0

Figure 8: Sigma protocol for Triptych, verify component

KeyGen(r) :
o If unspecified, select randomly r € F; and return (z, X) = (r,rG).
Sign(z, M, R) :

o Let R = {X; o} ols'™", o = {za}IZ} such that X, = z,G for all
a € [0,d).

Compute J = xf_&U.

Run Piriptyen (R, J, 1, 21,0) = a (up to verifier challenge).

Set £ = H(M, R,a).

Run Piiptych (§) — z (after verifier challenge).

Return o = (a, z, J).

Verify(o, M, R) :
o Let R={X;o} oty "
o Let 0 = (a,z,J) and set £ = H(M, R, a).
e Return Viyiptyen (R, J, @, 2).

Link(o, o) :

e Assuming o and ¢’ have been previously verified, extract J from o
and J’ from o’.

e Return 1 if J = J’ and 0 otherwise.

Figure 9: Linkable ring signature for Triptych

17

Construct a transaction key pair KeyGen(x) — (r¢, R¢) where Ry is the trans-
action public key.

Calculate the transaction fee uy using some fee calculation function, assumed
to be consistent and based on known information up to this point.

Choose, up to the user, O amounts b, Yo € [0,0) such that the sum of these
amounts plus the transaction fee uy equals the sum of decrypted amounts b; in
the inputs.

Run DKSAP on each address (K}.,, Ki.,) Yo € [0,0) to obtain corresponding

output public keys T,; extract the Diffie-Hellman shared secrets ¢, from each
DKSAP run.

Calculate output masking values y, = H'(”commitment mask” || c,) from

each ¢,, and compute the encrypted output amounts g, = bo®sH (" amount” || ¢;).

Compute output commitments C, = Com(yo, o). Define O, = (75, Co, go)-
Choose random masks y; € F; Vi € [1, W), and compute y; as:

O—1 W-—-1
Sve— > v
0o=0 =1

2

!
Yo

Compute pseudo-outputs P; = Com(yj, b;) Vi € [0, W).
Create a Bulletproof+ range proof B = BPProve({C,}, {bo}, {y0})-

Finally, for each i € [0, W), select N — 1 outputs {P;x}n_ from the ledger L
according to some algorithm Ilpsa. Insert P; at some randomly chosen index
l;. Extract their output public keys {Tix}n_, and commitments {Cix}r g -
Construct {Mi;k,a}ggio where M.k, 0 = T3, and M1 = Cigg.

Construct the unsigned transaction Uiy = (uf, Re, {Mi:k,a}, { P}, {00}, B).
Return Ui,

TXSign(uth {yi}v {ti}7 {yz{}a {bZ}v {bo}) = T:

Unpack Uiy = (ug, Re, {Mi.i.0}, {P; }, {00}, B).

Unpack {Oo} = {(T5,Co, 90) }

Compute linking tags J; = ¢; 'U.

Compute message m = H({R¢, Mik,a }, {Ji},{9i}, {90}, {To}). (In practice this
may have additional data to ensure no malleability.)

Define, for all i € [0,W), a set {Rik.a}iacy such that Rixo = Miko and
Rk = My — P

Define, for all ¢ € [0, W), a set {Ti;a}(lxzo such that r;0 = ¢; and 7.1 = y; — yi-

N-1,1
1,a=0

Calculate Triptych linkable ring signatures o; = Sign({ri;a }(11:0, m, {Ri;k,a}
for all ¢ € [0, W).

Construct transaction inputs Z; = ({Mi;k,a }, Py, Ji) for all i € [0, W).
Build the transaction 7 = (uy, Re, {Zi }, {Oo}, {0i}, B).
Return 7.

TxVerify(7T) — {0,1} :

If any items in the transaction are malformed, return 0.

18

)

e If the equation

W-—1 o-1
Z P = Com(0,uy) + Z Co
i= o=0

does not hold, return 0.

e Recompute the message m as defined in TxCreate. Additionally, recompute
{Ri;k,o} as defined in TxCreate for all ¢ € [0, W).

e For all ¢ € [0, W), run Verify(o;, m, { Ri;k,« }). If any return 0, return 0.
e Run BPVerify(5) and return 0 if it returns 0.

e For all previous transactions in the ledger L, extract all Triptych signatures in
each transaction in the ledger to form the set {0} }. For all i € [0, W) and all oy,
if Link (o, 0%) = 1, return 0. Note that this step can be efficiently implemented
using a computationally efficient table of all linking tags Ji in the ledger and
checking if the linking tags J; from each input are already present.

e Return 1.

The algorithm which decides how the ring is constructed for each ring signature is
known as the decoy selection algorithm, and is presented in these algorithms as [Ipgsa.
It can be constructed using statistical information about the nature of how outputs
are spent, and must be built in a way where the probability of an attacker guessing
the position of the output being spent in the ring is 1/|R| + n(\) with |R| being the
size of the ring and n(\) being a negligible error term. Essentially, the construction of
the ring must appear completely random in its choice of decoys such that the attacker
cannot gain any advantage from the algorithm alone. Constructions of [Ipsa are an
active topic and very specific to ledger implementations, and as such no specific one
is provided in this section. Further reading can be found in [6]. As of the time of
writing, proper construction of DSA has become even more important. We hope to
discuss more about this in a planned paper detailing potential upgrades to the ledger
in the future.

Note that TxRecover, TxCreate and TxSign are designed to be run together as
they depend on information generated in each algorithm. They’ve been semantically
separated in their presentation only for ease of reading.

4 Transparency and Discreet

Discreet provides both a private and public distributed ledger. This section defines the
transparent coin protocol of Discreet, and the bridge between the two coin protocols
in the form of mixed transactions.

4.1 Transparent Transactions

Transparent transactions, or public transactions, are value transfers on Discreet where
the amount field, as well as the destination address, are not obscured by the coin
protocol itself. This is required due to the regulatory restrictions exchanges and other
entities require for cryptocurrency transactions on their platforms. However, this
protocol is separate from the private coin protocol, and thus privacy guarantees are
not weakened simply from allowing both coin protocols.

4.1.1 Definitions

The transparent coin protocol’s public key cryptography uses Ed25519 for the elliptic
curve and EADSA as the signature algorithm. The hash function is SHA256. We will
assume for the sake of abstraction EADSA is equipped with definitions Sign(k, K, M) —

19

o and Verify(o, M) — {0,1} for a message M, key pair (k, K) and signature o. o is
also assumed to store the public key K as well.

The protocol also defines a public address as RIPEMD160(SHA256(K)). Addresses
are encoded using Baseb8 and may have additional data, such as version bytes and
checksums; these are not included in the protocol specification for clarity.

In the actual protocol, inputs to a transparent transaction are encoded by taking
the ID of the transaction the output being spent was created in (in the form of a
SHA256 hash of the transaction) and appending a byte representing the offset of said
output in the transaction’s outputs. This is to save on space in the ledger, and it is
assumed the transparent ledger can easily retrieve the full output data from this input.

4.1.2 Protocol Specification

A public transaction 7 with W inputs and O outputs is defined as a tuple 7 =
(Uf, {Ii}i‘zal, {00}2;01, {O'EdDSA;i}ivial) with uf being the fee and ogapsa;; input sig-
natures. Prior to signing, a hash of the inputs and outputs, as well as the fee and
any transaction header information, is made, and is known as the inner hash Hinner-
Signatures are performed on SHA256(Hinner||SHA256(Z;)), a hash concatenation of
the inner hash and the hash of the input corresponding to the owner performing their
authorization of spend via signature. This construct is to ensure uniqueness in the
signing hash for each input and to prevent known malleability-based attacks.

A transparent transaction’s individual inputs are represented by the tuple Z;, =
(Hrxsre, Ai, Yamt), with Hrysre being the SHA256 hash of the transaction which cre-
ated the output, A; being the address which owns the output being spent, and wamt
being the denomination, i.e. the amount of droplets the output contains. Similarly,
an output O, = (Ao, Uamt) With the members of the tuple having the same definitions
but respective to the output. The protocol for transparent transactions, then, is as
follows:

TxCreate({Z,}5 ", {A}9' {40} 951) = Uss :

e Recover the W individual inputs Z; as needed, as well as their associated keypairs
(ks, K;) and construct their set.

e (Calculate the transaction fee uy using some fee calculation function, assumed
to be consistent and based on known information up to this point.

e Choose, up to the user, O addresses and amounts to send funds to (represented
in the inputs as {Ao} and {u,}) such that the sum of the funds to send plus the
fee calculated in the step above equals the total number of coins in the inputs
being spent.

e Construct the outputs O, = (Ao, uo) for all o € [0,0).
e Construct the unsigned transaction Uiy = (uys,{Z;}, {Oo}).
e Return Uy,.

TxSign(Use, { (ki, Ki)}2 o) — T :

e Calculate the inner hash Hinner = SHA256(U:.) (note: inner hash in practice
may be calculated with header information, but for clarity this information is
not included).

o Unpack Uix = (us, {Zi}, {Oo}).

e Calculate the signing hashes Hgign;i = SHA256(Hinner||SHA256(Z;)) for all ¢ €
[0, W).

e Calculate the signatures opapsa;i = Sign(ki, Ki, Hsign;s) for all i € [0, W).

20

o Construct the transaction 7 = (uys, {Z:}, {Oo}, {oEdDsA: })-
e Return 7.

TxVerify(7) — {0,1} :

e If any items in the transaction are malformed, return 0.

e If any input in the transaction has already been spent, return 0.

e Unpack the input amounts u;Vi € [0, W) and output amounts u,Vo € [0,0), as
well as the transaction fee uy.

e If the equation
w—1 o

U; = uf + Uo

=0 o

|
-

I
<)

does not hold, return 0.

e Recompute the inner hash Hinner and all Hiign;;Vi € [0,WW) as specified in
TxSign.

e For all ¢ € [0, W), run Verify(crapsa;i, Hsign;i). If any return 0, return 0.

e Unpack the destination addresses A; from the inputs and all K; from the signa-
tures.

e Calculate A, = RIPEMD160(SHA256(K;)).
e For all i € [0, W), if any equality A; = A} does not hold, return 0.
e Return 1.

4.2 Mixed Transactions

Discreet utilizes a novel transaction framework allowing native transactions between

transparent and private addresses without the need for a bridge. Thus, the protocol

is equipped with a special type of transaction, known as a mixed transaction, which

removes the need for a service provider to exist within or on top of the protocol.
This transaction can be defined as:

T = (up AT} {00030 " {omansai Hes RAZwi ity AOmo}oto oitidy ', B)

Note that this simply reads as a combination of the fields in a private and transparent
transaction. As such, a mixed transaction can be thought of as, when separating the
fee parameter us from the underlying transaction:

T =(Tp, Te,ug)

The verification logic, as well as the creation logic, are the main points of difference
when constructing a mixed transaction. First, when a mixed transaction contains
transparent inputs, the amounts in the private outputs must be transparent as well.
This can be accomplished by treating those outputs the same as coinbase outputs;
i.e. the mask for their commitment would be 1 instead of a calculated y. This is to
ensure no funds are created out of thin air through careful manipulation of transaction
parameters, and also to ensure correctness. Note that by utilizing a separate mixin pool
for these types of outputs anonymity is preserved long-term; thus, implementations of
the mixed transaction protocol should pay attention to such solutions. Additionally,
one can form a commitment with a zero mask (as is done with the fee parameter in
private transactions) for both the sum of inputs and sum of outputs for transparent
members during validation. These are the main changes which must be made for
mixed transactions to work. The full logic is not reproduced for these transactions
in this section for the sake of brevity; it should be easy enough to see their logic
through combination of the protocols specified above and with the changes stated in
this paragraph.

21

5 Consensus

Discreet provides a means of achieving consensus by a novel combination of confidential
proof-of-stake and Asynchronous Byzantine Fault Tolerant (ABFT) systems called
Aurem. The confidential proof-of-stake protocol allows a subset of validators to be
picked to serve on a committee responsible for achieving finality, for a given epoch.
The actual mechanism for achieving consensus is performed with an asynchronous
byzantine fault tolerant mechanism, which guarantees liveness, total ordering, and
agreement, with appropriate resilience to censorship. The ABFT mechanism currently
chosen is based on AlephBFT [7], since it achieves optimal latency and communication
complexity while fitting to our throughput and transaction latency requirements.

5.1 Consensus Definitions

While ABFT consensus has many desirable properties, in order to achieve optimal
scalability there are restrictions on how many users can operate during a given epoch
as members. Additionally, since the set of consensus-level validators is dynamic (i.e.,
consensus validators which are viable candidates may join and leave the network),
having a dynamically-chosen subset of validators is necessary in our protocol. This
leads to two design choices.

First, a given committee at the consensus layer is static and responsible for run-
ning the finality mechanism for a given number of rounds, known as an epoch. During
this time, new blocks are minted and transactions are settled on the network via the
consensus mechanism. Necessarily, this committee is chosen prior to the epoch they
will run for.

Second, a fair means of selecting committee members from a pool of candidate
validators must be specified. In Aurem, this consists of a validator submitting a proof
of candidacy, weighted fairly by a stake in $DIST and in such a way that the staked
amount is confidential.

In Bitcoin, these two points are one and the same: any node can serve as a val-
idator and a consensus node simply by minting a new valid block at the next height.
However, the consensus mechanism cannot achieve finality instantly; instead, consen-
sus is asymptotically achieved, and a total ordering is eventually valid. In practice
many users of the Bitcoin network set a threshold number of blocks which must be
minted after the one containing a transaction to consider said transaction as "settled".
We want to have a mechanism which provides instant finality, which is to say, after
a given constant number of consensus rounds, we can consider a transaction as fully
settled.

Formally, consensus is divided into epochs and rounds. A round is a single duration
of nodes reliably minting and broadcasting blocks at the same height. It is synony-
mous with block height, but refers to the topological height within the DAG. An epoch
is a set of rounds such that epoch > ¢ for ¢ being a sufficiently sized parameter. In
consensus, prior to the next epoch, a set of nodes submit a bid for candidacy marked
by a proof of validity, which for Aurem is a confidential proof-of-stake demonstrating
ownership of a sufficient amount of $DIST in a staked output. The proof of validity
also contains extra information verified in zero-knowledge necessary for fair selection.

5.2 Choosing Committee Members

In order to choose committee members, a fair means of selection which can occur in
a decentralized network must exist. The heart of this method for Discreet is in the
confidential proof-of-stake mechanism.

First, the staking layer must have a structure to guarantee that stakes are anony-
mous in the transaction layer, as well as confidential in all layers of the network pro-

22

tocol. This can be achieved through the use of a dense merkle tree of stakes. A node
creates a special type of transaction called a Stake Transaction, which commits a value
to the stake merkle tree, but does not reveal the location in the tree or the amount
staked via a zero-knowledge proof of correctness for the calculations and a commitment
to the value. Later on, a node can submit an Unstake Transaction, which produces a
nullifier (a kind of opening to the committed value in the stake merkle tree), which is
stored on a sparse merkle tree. This protocol forms the basis of confidential proof-of-
stake.

In order for committee members to be selected, an additional transaction called
Stake Vote is used. This is a zero-knowledge proof where the creator attests to a stake
it created by proving (in zero-knowledge) a valid opening exists owned by itself, as
well as proof that the stake was computed correctly. Additional checks for the specific
implementation of proof-of-stake can be included additionally in the zero-knowlege
proof. StakeVote must also contain a method for producing a manipulation-free score
weighted only by the staked amount. The score is used to determine if a node will
be present in the next epoch as a committee member, and is computed such that
(1) no node can influence their score outside of the staked amount; (2) the staked
amount proportionally increases the probability of a score leading to selection. Such
a zero-knowledge proof is possible via succinct noninteractive arguments of knowlede,
or zkSNARKs. These can use any proving system which fits the standards of Discreet
and as this specific area of research is active, no commitments to any specific proving
system have been made, while many have been shown to work in private testing.

When implemented, StakeVote will make use of additional parameters to ensure
sufficient randomness in the probability distribution. Additional details on the specifics
of the stake and unstake transactions, as well as full descriptions of the proofs, will
be shared as the details are finalized. These will be published in a separate document
and made available through our website.

5.3 ABFT

As mentioned previously, Discreet’s finality layer can use any ABFT protocol. A
variant of AlephBFT was chosen due to the optimal communication complexity and
the guarantees from its use of reliable broadcast. It also provides sufficient finalization
times and throughput, and from tests has seen 89600 transactions per second[8] with
latency less than a second. Note that these numbers are seen as a "best case" as in
practice network usage isn’t constant and uniform, and over time the likelihood of
byzantine behavior will cause several potential issues. Nonetheless it is more than
enough to meet the needs of a global payment system.

The following sections will outline the core features of the protocol. For a full
overview, we recommend reading the source paper.

5.3.1 Broadcast

The protocol consists of a committee of validators which form the consensus network,
and operate by aggregating communication on the transaction layer into a total or-
dering of units on the consensus layer. These units are added by each node into a
local copy of the communication history, in an object called the communication his-
tory DAG (ch-DAG). Such a structure stores all received communication (i.e. blocks,
or units) and guarantees that (1) for all honest nodes, the set of units in the ch-DAG
form a valid chain; (2) all units at round r has at least 2f +1 parents at round r—1, for
all rounds; and (3) all units have parents created by different nodes (i.e., each parent
unit does not share the same creator). A node creates a new unit for round r when it
collects enough at least 2f + 1 units from round r — 1 from other nodes. These, as well
as the units which maximize the round they were created in for all other nodes not in

23

the previous set, are the parents of said node’s unit. Unit-specific data is added from
the transaction layer, as well as a signature and an index, and the unit is propagated
via reliable broadcast.

Reliable broadcast is an asynchronous communication protocol where (1) incorrect
units cannot be broadcasted successfully and (2) every unit broadcasted by an honest
node is eventually received. This is enough to guarantee the ch-DAG is reliable, ever-
expanding and fork-free. In practice, this protocol is coupled with an alert system
which can quickly tell the network if an invalid fork is created; this helps to prevent
fork bomb attacks, improve security and speed up the communication. Additionally,
reliable broadcast guarantees the ch-DAGs of all nodes can be kept in sync. Reliable
broadcast will also define a set of communication keys for each node k {pkx_:}X o
which allow for primitives Enci—;({0,1}*) — cipher and Decy_,;(cipher) — {0,1}*
to be constructed for encrypting a plaintext (represented as a binary string, implicitly)
to a ciphertext to be exchanged from node k to node i, and vice-versa.

Nodes then perform the consensus protocol by deciding whether a sufficient num-
ber of units are visible in the ch-DAG, then deciding on a common vote. The common
vote is randomized through a distributed key generation (DKG) scheme called Ran-
domness Beacon, which provides a trustless means of creating a common source of
randomness. Prior to the vote, a random permutation of units at the given round
is also created to provide a means of choosing the head unit in the ch-DAG. This is
required due to the non-triviality of such a problem; in an asynchronous setting, there
is no simple method of guaranteeing consistency across all ch-DAGs that the head unit
is the same for all honest nodes. The details on why this is so correspond to the FLP
impossibility.

5.3.2 Randomness Beacon

Randomness beacon is a means of constructing a trustless source of randomness in
ABFT. It is used to resolve calls to the primitive SecretBits(i,r) necessary for both
choosing a head unit for the topological layer within the ch-DAG and generating a
permutation of units. The protocol itself is inspired by threshold signatures, which
make use of the properties of pairing-based cryptography (PBC).

In a PBC scheme using elliptic curves, an underlying finite field Z, of prime p
elements defines an elliptic curve G of prime r elements. An embedding degree k is
chosen such that p® — 1 is a multiple of r, and as such Zy can be represented as a
field of the same characteristic as Z,. A second elliptic curve G2 over this field can be
generated such that one can define an isomorphism between G and G2 (this is due to
the fact that the r-th roots of unity are contained in Z,« and due to the r-torsion group
is contained in G2) [9]. Additionally a "pairing" between the curves e : G1 x G2 — Gr
can be constructed which is:

e Non-degenerate: e¢(P,Q) # 1,
e Bilinear: Va,b € Z;, P € G1,Q € Ga,: e(aP,bQ) = e(P,Q)*,
e Computable: An efficient algorithm can be constructed to compute e.

G is another group of order r over Z,. related between the first curves with
e. In practice, G2 can be efficiently reduced via a twist with degree d dividing k if
constructed properly, and this is done in Barreto-Naehrig curves using a sectic twist
E'(Z2) for € € Z,2, W® — ¢ irreducible over Z,2[W] for p = 1(mod6). More details
can be found in [9]. Assume g; is a chosen, agreed-upon generator for G1, g2 for Ga,
and g¢ = e(g1, g2)-

Regarding randomness beacons, nodes serve as key dealers as in traditional thresh-
old signature schemes, without picking a specific node to serve as the trusted dealer.
This is achieved using key boxes, and are constructed for a node k as follows.

24

e Sample a random polynomial of degree f

f
Ap(z) = an 2’ € Ly[a]
j=0

Compute a commitment to Ag

Cx = (", 01")

Define tossing keys T K}, and verification keys V K},
TK; = (tkhl, ...,tkkJ\]) = Ak(l)Vl €1..N

VK = (ki -.., vkg,N) = g%tkk,i)Vi €1..N
(Note that the verification key can be reconstructed by vki,; = [[j = OfC,l:.j).

Encrypt tossing keys using dedicated public keys from reliable broadcast pky—:
er,: = Encr_;(thi,:)

Let Ex = (ek1, ..., €k,N-
e The key box for k is KBy, = (Ck, Ek).

The key set for k, KSk, is (VKy, TKy). VK can be reconstructed from K By,
and individual tossing keys for each node can be decrypted from Ej, but only for that
specific node. Nodes vote on correctness of the key box by emitting 1 if the decrypted
tky,; satisfies gik""i = vkg,, and Deck—i(ex,;) otherwise; thus nodes cannot falsify
these if node k is an honest dealer. This vote occurs at round 3 and is performed for
all KB, in its ch-DAG. Nodes also include their shares m***: for all valid key boxes
received in their units as these K B become available through communication, for a
chosen nonce m, for shares §,, 1 = mAc® = mteei for m being mappable to an
element in G2. These shares are reconstructible into a random secret o,k = m A0
through lagrange interpolation.

At round 6, each node includes in their unit a set 7; C [N] where each element is
part of the set only if (1) U[k;0] < V (that is, the topological height of the unit from
node k at round 0 is less than this of the current node’s new unit); (2) for all j € [N]
such that U[j; 3] <V the votes for KBy, from j are 1.

Nodes can now combine tosses at round r > 9 and for nodes that have U[i; 6] in
their ch-DAG. First, the threshold signature produced is defined by:

Tm,i = Hk S Tiam,k = mzkETiAk(O) € Gs.

This can be hashed and used to produce an i-th source of randomness called MultiCoin,;.
Nodes produce a nonce m = ”i||r” and request from other nodes to include their shares
for the nonce m for each key set K.S; for j € T; between honest nodes which voted
K Bj was correct in round 3. At round r + 1 nodes can produce the SecretBits(i, r)
from the units at round 7 in their ch-DAG and their shares to form MultiCoin;. This
is sufficient to produce a randomness beacon protocol useful for our variant of Ale-
phBFT.

The actual implementation of this protocol will use many of the variants discussed
in [7]’s appendices to gain as much speed as possible. A full detailed description of the
full finality protocol is found in said source as well. Note that the protocol above was
chosen due to the guarantee of asynchronous liveness and due to the minimal com-
munication complexity for both setup and query. Any protocol which fits our desired
target values for throughput and latency while also guaranteeing consistency, total
ordering, resistance to censorship and liveness in an asynchronous setting can be used.

25

6 Future Work

This represents the first of many publications specifying details about the Discreet
ledger and its capabilities. For each of the main topics set forth in this paper, a sub-
sequent paper will be released, giving insight into how these will be implemented with
full explanations of their components. Two of these we plan to touch on further are
programmability and native multi-asset; initially planned to be part of this specifica-
tion, we came to the conclusion these topics would be better served in publications
of their own in the near future. The token economy for $DIST will be touched on
in a separate publication to be available shortly. This will detail tail emissions, coin-
base amount, schedules for minting, and token emissions. Additionally, regarding the
confidential proof-of-stake proofs Stake, Unstake, and Stake Vote, a document contain-
ing full diagrams and specifications for their circuits and logic will be made available
on our site once finalized. We also want to detail the ongoing research done within
the privacy community regarding privacy upgrades to the core coin protocol in an
"anticipated upgrades" publication.

7 Acknowledgements

We would like to thank Adam Gagol for his insight into asynchronous BFT. We would
also like to thank Aaron Feickert (Sarang Noether) for his initial explanations of Trip-
tych with our team in early 2021. Special thanks to Ukoe of MobileCoin for his insight
into Seraphis, a major upgrade in privacy coin protocols to be released next year.
Finally, we thank our community on various social media sites for their contribution
to the project and support of our team.

26

References

[1]

2]

3]

[4]

[5]

16]
7]

18]

19]

Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-Stake Pro-
tocols for Privacy-Aware Blockchains. Cryptology ePrint Archive, Paper
2018/1105. https://eprint.iacr.org/2018/1105. 2018. URL: https:
//eprint.iacr.org/2018/1105.

Heewon Chung, Kyoohyung Han, and Chanyang Ju. Bulletproofs+: Shorter
Proofs for Privacy-Enhanced Distributed Ledger. 2020. URL: https: //
eprint.iacr.org/2020/735.pdf.

Jens Groth and Markulf Kohlweiss. One-out-of-Many Proofs: Or How to
Leak a Secret and Spend a Coin. 2014. URL: https://eprint.iacr.org/
2014/764.pdf.

Sarang Noether and Brandon Goodell. Triptych: logarithmic-sized link-
able ring signatures with applications. Cryptology ePrint Archive, Report
2020/018. https://eprint.iacr.org/2020/018.pdf. 2020.

Muhammed F. Esgin et al. “MatRiCT: Efficient, Scalable and Post-Quantum
Blockchain Confidential Transactions Protocol”. In: Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security.

CCS ’19. London, United Kingdom: Association for Computing Machin-

ery, 2019, 567-584. 1SBN: 9781450367479. DOI: 10.1145/3319535.3354200.

URL: https://doi.org/10.1145/3319535.3354200.

Malte Moser et al. An Empirical Analysis of Traceability in the Monero
Blockchain. 2018. arXiv: 1704.04299 [cs.CR].

Adam Gagol, Damian Leundefinedniak, and Damian Straszak. “ Aleph: Effi-
cient Atomic Broadcast in Asynchronous Networks with Byzantine Nodes”.
In: Proceedings of the 1st ACM Conference on Advances in Financial Tech-
nologies. AFT '19. Zurich, Switzerland: Association for Computing Machin-
ery, 2019, 214-228. 1SBN: 9781450367325. DOT: 10.1145/3318041.3355467.
URL: https://doi.org/10.1145/3318041.3355467.

Damian Straszak and Michal Handzlik. Aleph Zero Foundation: Aleph Con-
sensus. 2021. URL: https://github. com/aleph - zero - foundation/
consensus-go.

Augusto Devegili, Michael Scott, and Ricardo Dahab. “Implementing Cryp-
tographic Pairings over Barreto-Naehrig Curves”. In: vol. 4575. July 2007,
pp- 197-207. 1sBN: 978-3-540-73488-8. DOI: 10.1007/978-3-540-73489-
5_10.

27

https://eprint.iacr.org/2018/1105
https://eprint.iacr.org/2018/1105
https://eprint.iacr.org/2018/1105
https://eprint.iacr.org/2020/735.pdf
https://eprint.iacr.org/2020/735.pdf
https://eprint.iacr.org/2014/764.pdf
https://eprint.iacr.org/2014/764.pdf
https://eprint.iacr.org/2020/018.pdf
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1145/3319535.3354200
https://arxiv.org/abs/1704.04299
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://github.com/aleph-zero-foundation/consensus-go
https://github.com/aleph-zero-foundation/consensus-go
https://doi.org/10.1007/978-3-540-73489-5_10
https://doi.org/10.1007/978-3-540-73489-5_10

	Introduction
	Preliminaries and Definitions
	Public Parameters
	Blockchain Definitions
	Distributed Ledger
	UTXO
	Wallets
	Transactions
	Blocks

	Nodes
	Consensus

	Base Transaction Model
	Cryptographic Definitions
	Constructions
	Addresses
	DKSAP
	Commitments
	Range Proofs

	Ring Signatures
	Sigma Protocols
	One-Out-of-Many Proofs
	Parallel One-Out-of-Many Construction
	Triptych

	Private Transaction Model

	Transparency and Discreet
	Transparent Transactions
	Definitions
	Protocol Specification

	Mixed Transactions

	Consensus
	Consensus Definitions
	Choosing Committee Members
	ABFT
	Broadcast
	Randomness Beacon

	Future Work
	Acknowledgements

